
261

Jorge Forero
Rodríguez
jfforero@ldq.cl
FEUP/ITI-LARSyS
Porto, Portugal

xCoAx 2021 9th Conference on
Computation, Communication, Aesthetics & X

2021.xCoAx.org

Code, Poetry and Freedom

Keywords: Codeworks, Poetry, Livecoding, FLOSS, Hacktivism, Resistance, Abya Yala

Codework, also known as code-poetry, is a variant of digital poetry, in turn a
subgenre of electronic literature. Codeworks are basically art that integrate
computer code in its overall aesthetic. In its broadest sense, code-inspired
visual art and livecoding could be categorized under this taxonomy. Live-
coding is a creative technique by which it is possible to compose audiovisual
works, interacting directly with the algorithms defined in a programming
language, in order to obtain results “on the fly” (Wang 2008). Livecoding
performance is permeated by FLOSS (Free / Libre / Open Source Software)
culture, since by definition in this artistic format, the source codes of the
programs are usually shared publicly with the audience. The research
presented below seeks to compose a view around these topics, using Alan
Sondheim’s codeworks taxonomy in order to analyze them from a critical
perspective. In particular, I seek to investigate the Latin American counter-
part, where FLOSS and “art converge as an element of autonomy from the
functional needs of the structure of code itself, while on the other hand, it
attempt to historicize and politicize it by anchoring code in practices of Resis-
tance’’ (Ledesma 2015).

262

1. Introduction

Code-poetry (also known as codework), is a variant of digital poetry, in turn a
sub-genre of electronic literature. Codeworks were for the first time described
with that name in an article published in the American Book Review, by the artist
and critic Alan Sondheim, in the year 2001. In this article the author introduces
the concept as:

“The computer stirring into the text, and the text stirring the computer”
(Sondheim 2001).

The researcher Rita Raley, refers to the concept as “the use of the contemporary
idiolect of computers and computational processes in the form of experimental
digital writing or net.writing” (Raley 2002). Sondheim’s article proposes a first
taxonomy, identifying several formulas by which it would be possible to merge
poetry and code.

a. Works using the syntactical interplay of surface language, with reference to
computer language and engagement.

This would be the case, as Sondheim describes, for poems inspired by the high-
level ALGOL (algorithm-oriented languages) programming language. The idea of
ALGOL’s poetry stems from the first OULIPO (ouvroir de littérature potentielle)
manifesto, published by François Le Lionnais in 1962, which proposes from
experimental literature;

“other forays may be imagined, notably into the area of special vocabulary (crow,
foxes, dolphins; Algol computer language, etc)” (Le Lionnais 1962).

263

As can be seen from this ALGOL poem (fig.1), written by the Oulipo Noël Arnaud,
this approach suggests to use common expressions between natural language
and high-level programming languages commands (BEGIN, For, Do, Else, etc.),
as a fundamental part of the poems. It is important to mention that although
those commands are originally created in English, Arnaud translated them
in french. Another perspective in this category also suggests the inclusion of
abstract symbolic elements of code in poetry. This is the case of the Mezangelle
project by the Australian artist Mary-Anne Breeze. For Raley, Mezangelle (M[ez]
ang.elle) is a “neologistic ‘netwurked’ language, which incorporates code snip-
pets, as well as coding structures, such as indentations, parentheses, and other
symbols to create new meanings’’ (Raley 2002). It is important to mention
that both AlGOL and Mezangelle poems are not functional languages by any
computer and only refers to codes from its surface layers.

Fig. 1. Noël Arnaud ALGOL
poetry book1

1. https://www.edition-
originale.com/fr/litterature/
editions-originales/arnaud-
algol-1968-57350

https://www.edition-originale.com/fr/litterature/editions-originales/arnaud-algol-1968-57350
https://www.edition-originale.com/fr/litterature/editions-originales/arnaud-algol-1968-57350
https://www.edition-originale.com/fr/litterature/editions-originales/arnaud-algol-1968-57350
https://www.edition-originale.com/fr/litterature/editions-originales/arnaud-algol-1968-57350

264

b. Works in which submerged code has modified the surface language—with
the possible representation of the code as well.

In this category, codes are executable in the sense they can be compiled and
translated into a functional machine language. Poems By Nari,2 for example,
are a series of visual poems produced by Ted Warnell, under the pseudonym of
Nari in 1996. In this project, the text is deeply linked to the source code used
to make the poem. In his poems, Warnell emphasizes this fusion between code
and content, stating:

“what i write:

document.write(“static”);

what you read:

Static

what i write:

var x; var y = “dynamic”;

for (x = 0; x < y.length; x++)

document.write(y.charAt(Math.floor(Math.random() * y.length)));

what you read:

maddicn OR ynyadcm OR imdiyca …

So there is what I write, and there is what I write writes (what you read) — two
different texts: code, a text below and poetry, a text above — they are related and
yet separate texts — separate, and inseparable!” (Warnell and Quimby 2012).

2. https://www.warnell.com/
real/nari.htm

https://www.warnell.com/real/nari.htm
https://www.warnell.com/real/nari.htm

265

c. Projects in which the source code emerges as content; there is a deconstruc-
tion of superficial language and a dichotomy between the layers of languages.

In this category, Sondheim proposes the works of Netochka Nezvanova and
JODI among other artists, alluding to their hybrid and rhizomatic characteristics
in the use of languages (Sondheim 2001). Netochka Nezvanova N.N (Nameless
Nobody), is one of the first fictional characters in art with multiple identities
on the Internet. It has been present since 1995, under the pseudonyms of
anticorp, integer, m2zk! and =cw4t7abs, among other names assigned to this
identity. As with the Pythagoreans, it is difficult - if not impossible - to know the

Fig. 2. Ted Warnell. Jack and
Jill poem ByNari.3

3. https://elmcip.net
node/7943

https://elmcip.net/node/7943
https://elmcip.net/node/7943

266

true authorship of the works presented under the various aliases that NN use,
but for decades they have produced works ranging from open source audiovi-
sual programming tools, to code-poetry. JODI, on the other hand, is an artistic
duo made up of Joan Heemskerk and Dirk Paesmans. They were among the
first artists to investigate and subvert conventions of internet and computer
programs. Radically disrupting the language of these systems, including inter-
faces, commands, errors and code, JODI stages extreme digital interventions
that destabilize the relationship between computer technology and its users.

2. Livecoding and Freedom

In a broad sense, Livecoding (LC) performances can be considered in the third
category in Sondheim’s taxonomy, in which it is possible to identify at least
three language layers. The idea has its antecedents in 1986 with the works of
Ron Kuivila, who together with his experimental group The Hub, composed the
piece Watersurface, done in a programming language called the Forth music
language, developed by David Anderson and Kuivila (Anderso and Kuivila 1991).
As described by the pioneers of the format, Alex McLean and his colleagues
Adrian Ward and David Griffiths (who formed the Slub collective by the year
2000), “livecoding emerged at the beginning of the 20th century, to describe the
activity of a group of practitioners and researchers who had begun developing
new approaches to making computer music and video animation in real time”
(McLean et al. 2010). It can be defined as the “interactive control of algorithmic
processes through programming activity” (Ward et al. 2004). The style of music
is not fixed, which suggests that livecoding is a performance method rather than

Fig. 3. Jodi Web page
http://wwwwwwwww.jodi.org

http://wwwwwwwww.jodi.org

267

a genre. A typical livecoding performance involves programmers writing/impro-
vising code on stage, with their screens projected for the audience and their code
dynamically interpreted to generate music and/or graphics (Collins et al. 2003).

2.1. FLOSS (Free/Libre/OpenSource Software)

Since the source codes that generate the audiovisual performances are usually
projected publicly on a screen, livecoding format is closely linked to the FLOSS
culture. Free / Libre / Open Source Software (FLOSS) are computer programs
that can be used, copied, shared, modified and redistributed with little or no
restrictions and that allow access to their source codes. The term FLOSS refers
equally to the concepts Free and Open in order to unify both approaches. Free
Software, defined by Richard Stallman and promoted by the Free Software Foun-
dation, places its emphasis on the freedom that this concept brings to users
(Stallman 2013). The 4 degrees of freedom in free software are:

» Freedom to use the program for any purpose.

» Freedom to study and modify the source code.

» Freedom to share and redistribute the program.

» Freedom to improve and release new versions.

On the other hand, open source software, in principle equivalent to free software,
tries to evade the philosophical question and the political implications of the
word freedom and place its emphasis on the peer-to-peer relationship of the
model (Stallman 2007). As Martin Zelinger introduces in his article Livecoding
the Law: Improvisation, Code, and Copyright, “in the field of copyright, livecoding
practices can further highlight some of the inherent flaws in traditional intel-
lectual property law” (Zeilinger 2014). Thus, he argues that livecoding has the
possibility to radically destabilize intellectual property for two main reasons;

“first, the strong improvisational characteristics of the art form challenge the
traditional definition of composer; second, his challenge of palimpsestic nature”
(Zeilinger 2014).

The fertile field of studies on jazz improvisation, that offers us a relevant context
for the present discussion, shows that improvised practices are recognized as
powerful modes of political expression, useful to understand social changes and

268

to break with structurally inscribed hegemonies in the music. Jazz and in partic-
ular free jazz, has often been associated with the insubordinate appropriation
of cultural traditions by progressive artists, and with resistance and rejection
of an established socio-political order (Stanbridge 2008).

2.2. Hacks, Hackers and Hackerspaces

Livecoding and the FLOSS philosophy are closely related to the D.I.Y (do it
yourself) culture and in particular to the hacker world. “Typically, a hacker is a
computer-minded technologist and a hack is a clever technical solution that is
reached by non-obvious means” (Levy 1984). The term hacker was first used in
1960 among MIT technology developers, whose lives revolved around computer
programming (Coleman 2014). The Researcher Steven Levy studied the unde-
clared ethical codes of hacker groups and conceptualized them under a hacker
ethic. These ethical principles were constituted as an amalgam of aesthetic and
pragmatic imperatives that included:

“Commitment to freedom of information, distrust of authority, greater dedication
to meritocracy and the firm belief that computers can be the basis of beauty and
a better world” (Levy 1984).

Hack spaces (also known as Hackerspaces or HackLabs) emerged from 1990,
are basically public spaces that promote collaborative creation using techno-
logical means. They are usually linked to training proposals that promote the
use of FLOSS resources into the DIY culture. Depending on their origin, these
spaces are born or derived from cultural community centers (Schrock 2014).

Live coders have their own spaces and institutions. TOPLAP is an organization
founded in 2004 to explore and promote livecoding. The activities that they
organize are: workshops, talks, periodically livecoding sessions from scratch
(improvisation from a blank page), meetings with the research community, as
well as Algoraves (livecoding raves parties). They also advise on projects that
use real-time code as a central element in the arts, digital humanities, and
science. TOPLAP has a founding manifesto, initially focused on musical projects,
however it has been expanded to various artistic genres. His manifesto clearly
states the necessity of showing the screen as a philosophy against what they
call a new digital obscurantism.44. https://toplap.org/wiki/

ManifestoDraft

https://toplap.org/wiki/ManifestoDraft
https://toplap.org/wiki/ManifestoDraft

269

3. Critical Perspectives

Critical Theory refers to the ways of thinking associated with Frankfurt’s Insti-
tute for Social Research. As Max Horkheimer described in his foundational essay,
a theory is critical to the extent that it seeks human “emancipation from slavery”,
acts as a “liberating … influence”, and works “to create a world which satisfies
the needs and powers of human beings” (Horkheimer 1972).

3.1. Critical Code Studies (CCS)

Critical Code Studies (CCS) are an emerging academic subfield linking socio-cul-
tural studies with computer science, with a special emphasis on computational
code. According to the theorist Mark C. Marino, “CCS can be defined as an
approach that addresses critical hermeneutics, computer code, software archi-
tecture and all documentation from a socio-historical context” (Marino 2006).
This perspective proposes that the lines of code do not have a neutral value and
can be analyzed using theoretical tools common to any other semiotic system
in addition to interpretive methods specially developed for the context. In the
article Code as Language wrote by Loss Pequeño Glazier, the author argues that

“if language is defined as written symbols organized in combinations and patterns
to express and communicate thoughts and feelings - language that is executed

- then the code is language” (Glazier 2006). Wendy Hui Kyong Chun’s proposal
goes further and argues that “software is ideology” (Chun 2004). In this sense,
we could extend the argument proposing that computer code is ideology too,
but an ideology that is doubly hidden by our illiteracy.

3.2. CCS for Multiples Code

In A Box, Darkly: Obfuscation, Weird Languages, and Code Aesthetics, Michael
Mateas and Nick Montfort describe the concept of multiple coding as a prac-
tice by which it is possible to obtain different representations for each language
layer (Mateas and Montfort 2005). A classic example of double coding in natu-
ral languages would be the sentence “Jean put dire comment on tap”, which
has grammatical sense in both French and English, but different meanings in
each language. Thus, multiple coding becomes a way of describing the many
meanings found in code, as in natural language, adding the computational
field as another layer of meaning. So, we can think and argue that all programs
have inherently multiple code and present the possibility for constructive
interpretation. An extreme case of multiple coding could be found in esoterics
programming languages . These kinds of expressions are created as an exper-

270

iment or research where developers explore and extend the possibilities of
code languages, sometimes even in an ironic and/or obfuscated way (Mateas
and Montfort 2005). For example, Piet5 is an esoteric programming language
invented by David Morgan-Mar and named in relation to the artist Piet Mondrian,
in which programs look like abstract paintings. Piet takes inputs like a picture
instead of source code, and then it interprets the pixels in the picture as the
code. So in this language we can clearly percibe at least three language layers
(natural, machine and abstract language).

3.3. Functional Language

The article the Code is Not the Text (unless it is the text), published by the artist
John Cayley, argues against the academic notion that computational code is
itself the text we should study. According to Cayley, the figure of “code-as-text”,
or the interpretation of the code as the object of study “is more of a rhetorical
form, of the baroque euphemism of the new media” (Caley 2002). His main
argument is that many of the code-poetry studied by critics at the time, were
analyzed just from the surface layer of the code. Thus, the analyzes do not delve
into the functional part of the algorithms, in their interpretation as executable
instructions and computable processes. Caley examines his poem Hypertalk
written in a language that can be interpreted by humans and compiled by
computers. From this perspective, this approach critiques proposals such as
Mezangelle or ALGOL poetry, as examples of code-poetry. Although theorists
such as Katherine Hayles refer to Mezangelle as a Creole composed of program-
ming languages and natural languages (Hayles 2007), Caley claims that in this
work the code presented is placed just as a decorative aesthetic, not making
this Creole possible, since there is not really a computational language. However,
the functionality of the code does not seem to be a requirement in a broad defi-

5. https://www.dangermouse.
net/esoteric/piet.html

Fig. 4. Daniel Holden and Chris
Kerr. Piet project.6

6. http://code-poetry.com/bark

https://www.dangermouse.net/esoteric/piet.html
https://www.dangermouse.net/esoteric/piet.html
http://code-poetry.com/bark

271

nition of the genre. In response, the article Interferences: [Net.Writing] and
the Practice of Codework by Rita Raley, refutes these unnecessary limitations
comparing Cayley’s privilege of the code (on output) to Adorno’s remarks on
music as a mere consequence of the score. As she explains, codeworks do not
suggest, nor don’t need, that the code must itself be privileged. Therefore, Mez
jobs are valid codeworks, because “they play with code structures at the display
level of the text” (Raley 2002). Despite their disagreement over the function-
ality of code-poetry, both Raley and Cayley suggest that code is a special type
of language that is worthy of the attention of scholars.

3.4. Critics to Code as Poetry

Geoff Cox, Alex McLean and Adrian Ward, in his essay The Aesthetics of Gener-
ative Code, compare code with poetry, while developing some techniques to
interpret it. As they state, “the code works like poetry in the sense that it plays
with the structures of language itself, as well as with our corresponding percep-
tions” (Cox, McLean, and Ward 2001). However, excluding some works for poetry
and computer code in its broadest definition, most of the codes are far away
from being considered literature. Unlike text, computer code does not usually
appear to be written to be viewed by another human (however many times it is).
Codes are the way we interact with computers, allowing us to convey thoughts,
reasoning and choices that function as an extension of the creator’s intentions.
The written form is simply a logical notation that is computer-readable, and is
a representation of this process. The code itself, therefore, is clearly not poetry.
In addition, the artistic meaning of the code rests, as in poetry, in conjunction
with its execution, not merely in its written form.

4. Codeworks from Latin Abya-Yala7

As with their Anglo-American counterpart, many Latin American artists have
adopted a code-inspired aesthetic, creating projects that could be classi-
fied under Alan Sondheim’s proposed taxonomies. In this sense we can find
antecedents in some works of the Uruguayan artist Brian Mackern that fall
into the first Sondheim’s category. The project Wartime (2003) per example, is
a codework that is situated on the invasion perpetrated by the United States
and other countries to Iraq. As Mezangelle, Wartime does not use a functional
programming language, but far away from mezangelle esthetical concerns,
Wartime is situated in a notorious political context.

7. The ancient aboriginal
civilizations that inhabited
the land that Europe named
America, had numerous
denominations. The Aymara
leader Takir Mamani invites
us to revindicate the original
name proposed by the Kuna
culture for america; Abya Yala,
which means land of blood.

272

A relationship between codeworks and FLOSS in Latin America can be found
in the poem you CODE me,9 by the Mexican artist Laura Balboa. Balboa’s poem
may be in the line of not executable codes too, but it embodies the hacker’s
transgressive stance toward freedom of knowledge and dissemination of infor-
mation through the deployment of codes and symbols. For instance, the poem
highlights the concept of CopyLeft, using the expression “Viva la copyleft’’ to
expose the dominance of English-American culture by implicitly criticizing how
English populated technological languages while “she ironically celebrates this
linguistic hybridity” (Ledesma 2015). The techno-poetic works developed since
1999 by the Mexican artist and programmer Eugenio Tisselli, goes from net.art
to the code-poetry. One of his first proposals entitled Midipoet10 is a real-time
image and sound manipulation computer program that allows to compose and
interpret various types of works. According to the Argentine researcher Clau-
dia Kozak, “the politicization in the practice of digital poetry has become very
evident in Tisselli’s works and latinamerican net-artists in general” (Kozak 2017).
His codework project entitled Degenerativa,11 meanwhile (2005), consists of a

Fig. 5. Brian Mackern WarTime
poem.8

8. http://netart.org.uy/
wartime/

9. http://youcode.me/index.
html

10. http://motorhueso.net/
midipoet/

11. http://www.motorhueso.
net/degenerativa/

http://netart.org.uy/wartime/
http://netart.org.uy/wartime/
http://youcode.me/index.html
http://youcode.me/index.html
http://motorhueso.net/midipoet/
http://motorhueso.net/midipoet/
http://www.motorhueso.net/degenerativa/
http://www.motorhueso.net/degenerativa/

273

web page that degrades the code as it is visited. This idea about the transitory
and degradation is taken up in several of his proposals, particularly in his work
The27th.The27,12 where each time the New York Stock Exchange Composite
Index closes with a positive percent variation, a fragment of the 27th article of
the Mexican Constitution is automatically translated into English.

4.1. Livecoding Yala (Livecoding land)

In the field of livecoding from Abya Yala, Hernani Villaseñor Ramírez register the
first activities in Mexico, particularly since 2006, carried out by members of the
Audio Workshop of the Multimedia Center (CMM), such as some concerts by the
mU group, formed by Ernesto Romero, Eduardo Meléndez and Ezequiel Netri
or in some concerts performed by Netri himself (Ramirez 2019). From 2009 to
2014, the aforementioned space also periodically organized livecoding concerts
that were characterized by the writing of source code from scratch (a blank
page), a duration of nine minutes per participation, the projection of the code to
the public, participation of one live coder of sound and another of image in turn,
and a predominant use of the SuperCollider and Fluxus softwares. Thus, in what
griffiths entitled “the Mexican style” (Griffiths 2012), artists such as Alexandra

12. http://motorhueso.net/27/

Fig. 6. Eugenio Tisselli
Degenerativa poem.

http://motorhueso.net/27/

274

Cárdenas, Malitzin Cortés, Jaime Lobato or the RGGTRN group emerge, among
many other artists and creatives who spread their concerns around Abya Yala.

4.2. My Abya (My blood)

My approach to the livecoding is related to a workshop that the Chilean artist
Christian Oyarzún shared in the Faculty of Architecture of the University of Chile,
at the beginning of year 2018. Christian, by the time, had just arrived from the
International Live Coding Conference ICLC in Morelia Mexico,13 where he was
able to meet the Latin American coders. According to Oyarzún, in principle his
codeworks were somewhat relegated in front of his audiovisual production.
That is, although it was a livecoding proposal, the codes were just seen only by
himself, while only the audiovisual results were shared. In such a meeting, the
Colombian artist Alexandra Cárdenas proposes to Christian to incorporate that
layer and show the process as part of the work. With that in mind, the workshop
introduced us to tidalcycles software and discussed some interesting works that
had been presented at the conference. In particular, he mentions the case of
the Colombian artist Celeste Betancur who develops a proposal called CineVivo,
with which it is possible to create livecoding using natural language (Rodríguez,
Betancur, and Rodríguez 2019). That idea remained latent in me, so I initially
sought to reconstruct an audiovisual work, called the transit of the Kloketen,
from the poetics of Natural language coding. For this, I developed a patch in the
open source language Pure Data, capable of reading from a text file, messages
and arguments that would allow interacting with various pre-programmed
audiovisual algorithms. My interest was to be able to point to the creative power
of words, to build an identity from a decolonized language. The first live code-
work that I built by this way was entitled transit (it is worse than the flood),14
was presented in the Selk’nam land Puerto Natales, a town wounded by the
onslaught of colonization to the point of almost complete genocide.

4.3. Critical Studies from Abya Yala

While the code-poetry from the “northern hemisphere” has concentrated
on aesthetic issues, in Latin Abya Yala seems it has been established from
socio-political tension.

On the one hand Latin American works draw on an element of autonomy from the
functional needs of the structure of code itself, while on the other, they attempt
to historicize and politicize it by anchoring code in practices of Resistance
(Ledesma 2015).

13. https://iclc.toplap.
org/2017/

14. Forero, Jorge (2018). El
tránsito del Kloketen. Festival
Internacional de Arte y Nuevos
Medios LUMEN.
https://forero.cl/transito/

https://iclc.toplap.org/2017/
https://iclc.toplap.org/2017/
https://forero.cl/transito

275

The presence of code in the artistic sphere, in addition to incorporating creative
tools and techniques, reconfigures the notion of art itself and poses a challenge
that encompasses its ontological and axiological meaning. This new writing
responds to an integrating purpose of other discourses that “liberate litera-
ture from the tyranny of dogma, but it also aims to prevent it from being again
engulfed by the system” (Vega 2016). Thus, and in accordance with their Latin
American neo-avant-garde predecessors, these post-conceptual writings of
software choose to “interrogate the political in art, in the mobile web of poetic
strategies, rhetorical devices and forms of interpellation, through which the
work projects and disputes its effects of meaning” (Davis 2011).

Latin American codeworks reveal its own uncertain position, making an ideo-
logical critique that bears traces of its historical context and its geographical
ties with the Global South. It is, therefore, a commitment whose ethical scope
entails an aesthetic response of rejection of the models legitimized by the
institution. As Eduardo Ledesma argues, Latin Abya Yala presents code not as
a mathematical certainty that, by its programmability, determines any outcome,
but as indecisive in the, deconstructive sense of resistance to totalitarian and
complete meaning or knowledge that resists the very ruthless application of
codified rules or programs and casts doubt to the decision-making process, so
that indecision becomes the origin of ethics and politics. Of course, for this to
be possible it is necessary to intervene directly in the program, using computer
code, a type of language that will always imply a degree of efficiency and useful-
ness even in uselessness. Tisselli reformulates this paradox by appealing to
oulipian notions that you can only command language by obeying it.

5. Conclusion

As the expert in complexity Cesar Hidalgo tells us in his book Why information
grows, although information arises naturally in systems out of equilibrium in
the form of order and matter intrinsically has the ability to compute (Hidalgo
2015), communication supposes a first structure in common in the coding that
structures a message. A message, as Claude Shannon states, certainly does
not guarantee coherence or meaning, but rather it is constituted as a first form
of information consensus.

Are we speaking the same language?

Codes and programs provide us new readings and tools with which we can crit-
ically analyze and construct cultural heritage, in a society mediated by informa-

276

tion. For this reason, free access to source code seems to be so important by
today. Knowledge cannot be privatized by and for a group. In this same sense,
we must establish consensus to decode and share language. Otherwise, it will
be the predominant hegemonies that will make a violent conquest of that terri-
tory (perhaps they longer do so). Livecoding and FLOSS in this sense naturally
aligns themself with a critical and emancipatory perspective. Because the idea
beyond proclaiming open and free access to software, warns that asymmetry
in access to knowledge only promotes exploitation. In effect, it is about rais-
ing a writing that, following Eugenio Tisselli, “can break with the hegemony of
economic behavior and its correlative technocracy, proposing, from language,
other ways of understanding our way of existing” (Leonardo 2015).

I propose that Latin America seems to run with advantages, since we have
had to survive hacking the foreign systems imposed. Hacks, for us, are a value
and almost a duty. Thus, although Griffiths distinguishes a Mexican style that
he proposes to build from the blank page, this proposal is far from just being
aesthetic. The blank page is the possibility that we have from Abya Yala since
we continually build ourselves in search of identity.

References

Anderso, David,
and Ron Kuivila.
1991. “Formula: A Program-
ming language for expressive
computer music.” Computer
24/7, 12-21.

Berelson, Bernard.
1959. “The State of Commu-
nication Research.” Public
Opinion Quarterly 23 (1).

Berentsen, Mirthe.
2018. “How we became
artists: Net Art duo JODI.”
Art|Basel. https://www.
artbasel.com/stories/how-we-
became-artists-jodi.

Caley, John.
2002. The Code is not the
Text (Unless It Is the Text).
N.p.: Electronic Book Review.
https://electronicbookreview.
com/essay/the-code-is-not-
the-text-unless-it-is-the-text/.

Chun, Wendy Hui Kyong.
2004. “On Software, or the
Persistence of Visual Knowl-
edge.” Grey Room 18:26–51.

Coleman, Gabriella.
2014. “Hacker.” The Johns
Hopkins Encyclopedia of
Digital Textuality. https://
gabriellacoleman.org/wp-%20
content/uploads/2013/04/
Coleman-Hacker-John-Hop-
kins-2013-Final.pdf.

Collins, N., A. McLean, J.
Rohrhuber, and A. Ward.
2003. “Live coding in laptop
performance.” Organised
Sound 8(03) (Sound):
321–330.

Cox, Geoff,
Alex McLean,
and Adrian Ward.
2001. “The aesthetics of
generative code.” In Proc. of
Generative Art, no. Art.

Dance, Frank,
and Carl Larson.
1976. The functions of human
communication: A theoretical
approach. New York: Holt,
Rinehart and Winston.

https://www.artbasel.com/stories/how-we-became-artists-jodi
https://www.artbasel.com/stories/how-we-became-artists-jodi
https://www.artbasel.com/stories/how-we-became-artists-jodi
https://electronicbookreview.com/essay/the-code-is-not-the-text-unless-it-is-the-text/
https://electronicbookreview.com/essay/the-code-is-not-the-text-unless-it-is-the-text/
https://electronicbookreview.com/essay/the-code-is-not-the-text-unless-it-is-the-text/
https://gabriellacoleman.org/wp-%20content/uploads/2013/04/Coleman-Hacker-John-Hopkins-2013-Final.pdf
https://gabriellacoleman.org/wp-%20content/uploads/2013/04/Coleman-Hacker-John-Hopkins-2013-Final.pdf
https://gabriellacoleman.org/wp-%20content/uploads/2013/04/Coleman-Hacker-John-Hopkins-2013-Final.pdf
https://gabriellacoleman.org/wp-%20content/uploads/2013/04/Coleman-Hacker-John-Hopkins-2013-Final.pdf
https://gabriellacoleman.org/wp-%20content/uploads/2013/04/Coleman-Hacker-John-Hopkins-2013-Final.pdf

277

Davis, Fernando.
2011. “La invención de nuevos
conceptos de vida. Estrategias
poéticas y políticas en los
conceptualismos en América
Latina.” 143-155.

Glazier, Loss.
2006. “Code as Language.”
Leonardo Electronic Almanac
14:5-6.

Griffiths, Dave.
2012. “Mexican livecoding
style.” Dave’s blog of art
and programming. http://
www.pawfal.org/dave/
blog/2012/11/mexican-
livecoding-style/.

Hayles, Katherine.
2007. “Electronic Literature:
What is it?” The Electronic
Literature Organization 1.0
(Literature).

Hidalgo, César.
2015. Why information grows:
the evolution of order, from
atoms to economies. N.p.: MIT.

Horkheimer, Max.
 1972. Critical theory: selected
essays. New York: Continuum
Pub. Corp.

Kozak, Claudia.
2017. “Literatura expandida
en el dominio digital.” El Taco
en la Brea.

Ledesma, Eduardo.
2015. “The Poetics and Politics
of Computer Code in Latin
America: Codework, Code Art,
and Live Coding.” Revista De
Estudios Hispánicos 49.

Le Lionnais, François.
 1962. “La LiPo.” First, no.
Manifest (sep): 27.

Leonardo, Isaura.
2015. “Poéticas, lo humano
a flote.” Entrevista a Eugenio
Tisselli.

Levy, Steven.
1984. Hackers: heroes of the
computer revolution. N.Y:
Anchor Press/Doubleday.

Littlejohn, Stephen.
2002. Theories of human com-
munication. Belmont, CA: Wad-
sworth/Thomson Learning.

Marino, Mark.
2006. Critical Code Studies.
N.p.: Electronic Book Review.

Mateas, Michael,
and Nick Montfort.
2005. “A Box, Darkly: Obfus-
cation, Weird Languages, and
Code Aesthetics.” Digital Arts
and Culture.

McLean, A., N. Collins, J.
Rohrhuber, and A. Ward.
2003. “Live coding in laptop
performance.” Organised
Sound 8(03) (Computer Mu-
sic): 321–330.

McLean, Alex,
Dave Griffiths, Nick Collins,
and Geraint Wiggins.
2010. “Visualisation of live
code.” Proceedings of the 2010
international conference on
Electronic Visualisation and the
Arts (EVA’10), no. Electronic Vi-
sualisation and the Arts, 26-30.

Raley, Rita.
2002. Interferences: Net.
Writing and the Practice of
Codework. EEUU: Electronic
Book Review.

Ramirez, Hernani.
2019. “Live coding en México:
una revisión a partir del
concierto “A la escucha del
código fuente.”” La oreja
culta. https://laorejainculta.
net/2019/03/18/live-coding-
en-mexico-una-revision-a-
partir-del-concierto-a-la-
escucha-del-codigo-fuente/.

Rodríguez, Jessica,
Esteban Betancur,
and Rolando Rodríguez.
2019. “CineVivo: a mini-lan-
guage for live-visuals.” ICLC
2019.

Schrock, Andrew.
2014. ““Education in Dis-
guise”: Culture of a Hacker and
Maker Space.” Interactions:
UCLA Journal of Education and
Information Studies 10 (Culture
of a Hacker and Maker Space).

Sondheim, Alan.
2001. “Introduction: Code-
work.” In American Book
Review, 4. Chicago: American
Book Review.

Stallman, Richard.
2007. “Por qué el «código
abierto» pierde de vista lo
esencial del software libre.”
GNU. https://www.gnu.org/
philosophy/open-source-
misses-the-point.es.html.

Stallman, Richard.
2013. “Philosophy of the
GNU Project.” GNU. https://
www.gnu.org/philosophy/
philosophy.html.

Stanbridge, Alan.
2008. “From the Margins to the
Mainstream: Jazz, Social Rela-
tions, and Discourses of Value.”
Critical Studies in Improvisation/
Études critiques en improvisation
Vol. 4 No.1 (Music).

Vega, Aparicio.
2016. Software Allegorical
Writings: Aesthetic Breakdown,
Ethic Rearticulation, from
Mexican Sphere. Vol. 5#2. N.p.:
Revista Caracteres.

Wang, Ge.
2008. The ChucK Audio
Programming Language: A
Strongly-timed and On-the-fly
Environ/mentality. London:
Princeton University.

Ward, A., J. Rohrhuber,
F. Olofsson, A. McLean,
D. Griffiths, N. Collin,
and A. Alexander.
2004. Live algorithm program-
ming and a temporary organisa-
tion for its promotion. London:
Goriunova, O. and Shulgin, A.

Warnell, Ted,
and Melton Quimby.
2012. “Code Poetry.” SCRIPTjr.
nl. www.scriptjr.nl/texts/code/
ted-warnell.

Zeilinger, Martin.
2014. “Live Coding the Law:
Improvisation, Code, and
Copyright.” Computer Music
Journal 38 (Music): 78-89.

http://www.pawfal.org/dave/blog/2012/11/mexican-livecoding-style/
http://www.pawfal.org/dave/blog/2012/11/mexican-livecoding-style/
http://www.pawfal.org/dave/blog/2012/11/mexican-livecoding-style/
http://www.pawfal.org/dave/blog/2012/11/mexican-livecoding-style/
https://laorejainculta.net/2019/03/18/live-coding-en-mexico-una-revision-a-partir-del-concierto-a-la-escucha-del-codigo-fuente/
https://laorejainculta.net/2019/03/18/live-coding-en-mexico-una-revision-a-partir-del-concierto-a-la-escucha-del-codigo-fuente/
https://laorejainculta.net/2019/03/18/live-coding-en-mexico-una-revision-a-partir-del-concierto-a-la-escucha-del-codigo-fuente/
https://laorejainculta.net/2019/03/18/live-coding-en-mexico-una-revision-a-partir-del-concierto-a-la-escucha-del-codigo-fuente/
https://laorejainculta.net/2019/03/18/live-coding-en-mexico-una-revision-a-partir-del-concierto-a-la-escucha-del-codigo-fuente/
https://www.gnu.org/philosophy/open-source-misses-the-point.es.html
https://www.gnu.org/philosophy/open-source-misses-the-point.es.html
https://www.gnu.org/philosophy/open-source-misses-the-point.es.html
https://www.gnu.org/philosophy/philosophy.html
https://www.gnu.org/philosophy/philosophy.html
https://www.gnu.org/philosophy/philosophy.html
www.scriptjr.nl/texts/code/ted-warnell
www.scriptjr.nl/texts/code/ted-warnell

