
94

Bjarni Gunnarsson
Gunnarssonb@koncon.nl
Institute of Sonology,
Royal Conservatoire

xCoAx 2021 9th Conference on
Computation, Communication, Aesthetics & X

2021.xCoAx.org

Synthesis and Operation Flows
Keywords: Synthesis, Algorithms, Signal Flows, Sound Streams, Sound Transformation
Digital sound synthesis can be described in terms of discrete operations
applied to signals according to given criteria. The process of organising such
operations can be subject to creative variation and generative algorithms.
This article presents proposals for how a sound construction process can be
thought of as a combination of synthesis and applied transformations. Oper-
ational spaces are examined and how process configuration and incomplete-
ness can serve as creative models for synthesis. Properties of sound streams
are also considered and how they can involve liveness and unpredictability.
A software framework is finally introduced followed by a reflection on its
use in creative practice.

95

1. Introduction

Algorithmic music procedures often involve generating data that requires
mapping to a musical domain. Sound synthesis on the other hand usually
concerns a more direct description of a signal flow. Instead of using predefined
algorithms during composition what is proposed here is to use dynamic work-
flows inspired by data transformation pipelines and signal flows. Such processes
are adapted in order to produce algorithmic sound based on synthesis, trans-
formations and the manipulation of sound streams.

The goal here is to propose a model of a synthetic sound stream as a pipeline of
transformations that can be freely manipulated or changed while they run. A
related concern is how to generate transformation pipelines in order to produce
evolving sounds. Focusing on synthesis and sequences of sound transformation
reveals a working mode centred entirely around sound itself. It also introduces
a functional strategy that concerns treating sound as an operation sequence.
Finally, it questions how dynamic changes in synthetic sound streams can work
as a flexible interaction mode and how the attitudes of evolving algorithms can
be made audible through the resulting sound.

A software framework named OF (Operation Flows) will be introduced that
implements some of the ideas covered here in this text. It consists of four main
process categories:

1. Synthesis processes with dynamic waveform generation

2. Atomic sound transformations that adapt to incoming signals

3. Operation pipelines and algorithms to control and generate them

4. Direct access, observers and reactions for content-based triggers and actions

The framework allows for experimenting with synthesis and algorithmic pipe-
lines of sound transformations. It is designed to be configured with common
existing workflows and to be easily extensible. Examples that demonstrate the
relation between the text and the system will be presented here below.

96

2. Background

2.1. Operational Spaces

Computer music processes consist of transformations that are applied to musi-
cal material in order to develop and extend it over time. Such transformations
fluidly translate into algorithms allowing for automation, iteration or genera-
tive possibilities. The construction of automated processes, or the encoding of

“frozen thought” (Chaitin 2005, 24), preferably involves transparent, elementary
operations that are combined into precise steps and a clear sequence of actions.
How mechanically executable tasks are defined and a chain of operations is
arranged is something considered here as part of original sound synthesis and
the becoming of electronic sound.

Creative intentions take shape during the activity of sound production and not
only prior to it. By focusing on the operational as ‘on-going’, the aim here is to
explore conditions where one continuously engages with generative sound
processes and how they are constructed. The arrangement of synthetic sound
streams and how connecting to them can be part of a creative process creates
a bridge between algorithms and the operations of electronic music production.
Focusing on the actions and algorithms behind sound streams allows for data
processing to be considered as a fruitful model for sound composition.

In her book Programmed vision Wendy Hui Kyong Chun refers to the process of
mechanization as ‘Automatic programming’ (Kyong Chun 2011, 41). She argues
that it contributes both to a certain deskilling but also to the forming of crafts-
manship where “through automation, expertise is both created and called into
question”. The particularity of a given task is highlighted here through repetition
and purification of the steps it consists of. Kyong Chun also emphasises the spec-
ificity of the programmable medium where algorithms translate to “this thing
called software—something theoretically (if not practically) iterable, repeatable,
reusable, no matter who wrote it or what machine it was destined for”.

Kyong Chun’s vision brings about the idea of operational space, afforded by soft-
ware, where elements enter into dynamic relations and display a rich possibility
of connecting. This malleable nature of software allows for “making possible
the transformation of anything into anything else via the medium of information”
(Kyong Chun 2011, 57). It is particularly useful to compare sound creation to
information processing in order to think of synthesis as the selection of opera-
tions that are combined from a larger set of possible actions. The idea of Action

97

space shaping (Kanervisto, Scheller and Hautamäki 2020) can be useful when
addressing the arrangement of available operations. It refers to the modification
of action space and how it can be refined within a given context. For example,
how the number of potential actions can be restricted or how actions can be
combined to better address any task at hand.

For our current purposes, it is important to think of an action sequence as some-
thing that can be composed or transformed but that remains in a tight relation-
ship with any material or data that it processes. It is also important to note that
an operation selection is made from the action space afforded by available
material. Operation sequences then execute over time and leave traces through
the action space with a strong imprint on the resulting sound.

2.2. Configuration

For the composer Gottfried Michael Koenig the concept of musical material
includes not only sounds but also the method by which they are treated. Koenig
introduced compositional processes where musical form appears as the result
of sound operations and the production technique of derived materials (Koenig
1987). Methods thus become structurally bound to material and provide a direc-
tion of how sounds are ordered through their operational history. Furthermore,
formal relationships between sounds are highlighted by the way they have been
treated where “work-processes, composed in detail, are related to each other,
and these relationships come into evidence at the surface of the sounds. Each
sound is therefore not a blotch of colour but itself a form, as it owes its existence
to a formal construction, to a form process.” (Koenig 1965, 8).

The point of view Koenig proposes emphasizes how a sound creation process
becomes part of the structural possibilities the sound material offers. Extending
this idea, the models presented here below combine synthesis with operations
of transformation and control. How the operations are applied and the conse-
quence that has on working with the generated sound becomes an important
focus point for creative treatment.

Thinking material together with its treatment requires highlighting the concept of
what it consists of and the element it connects to. In the context of human-ma-
chine interaction, Lucy Suchman proposes the term configuration to assist us
in thinking about technological processes with a “particular attention to the
imaginaries and materialities that they join together” (Suchman 2012, 48). The
nature of applied methods plays a key role where, instead of existing as inde-

98

pendent of their application, “they are figured within design and engineering
discourses precisely not as already existing and independently agential, but
as emerging from and dependent upon the actions of their (human) makers.”
(Suchman 2012, 55).

Configuration brings elements together, it enables the separate existence
of processes while extending the boundaries of what their combination can
produce. By joining together, configuration contributes to the wholeness of
technical processes.

On a similar thread, sociologist John Law proposes the notion of method assem-
blage that “detect, resonate with, and amplify particular patterns of relations in
the excessive and overwhelming fluxes of the real” (Law 2004, 14). He believes
that a research method is constructed in parallel with what it achieves. It allows
for discovering realities but also to be produced along the way and to assist in
the attempt to “recognise and treat with the fluidities, leakages and entangle-
ments that make up the hinterland of research” (Law, 41). Sound synthesis can
be considered for such a purpose as it offers ideal dimensions for investigating
the imprints of automated operations and context-sensitive processing.

A tight coupling between method and material highlights the importance
of direct access and situated actions (Suchman 2006). Instead of forming
abstract plans, every action is situated around the context it will occur in. This
could translate to investigate sound-itself as having potential characteris-
tics of dynamic activities, continuous change, uncertainty and a tendency of
becoming. The goal is to arrive at a contact point where sound synthesis, the
construction of compositional action plans and development of formal ideas
are all more or less the same thing. This bundling (of material and method) is
achieved by constructing pipelines of transformations (discussed below) that
are applied to synthetic sound.

Of great importance are the direct actions that can be applied once the pipe-
line executes and interact with the way it unfolds. Instead of applying musical
algorithms as mechanical sequences of actions, the idea is rather to apply the
transformations over time with a possibility of articulating key aspects of how
each transformation becomes audible. Manual interaction with the automated
pipeline pervades the operational configuration and allows for an enhanced
engagement with its processes.

99

2.3. Incompleteness

In her book Software Theory, Federica Frabetti examines the ephemeral nature
of software, the distinction between system conception and realisation, and the
difference between “software as a product and software as a process” (Frabetti
2015, 104). She draws attention to the difficulty of detaching a system from its
development and the importance of iteration where implementation informs
specification while also being conditioned by it. This highlights the strange
incompleteness of system building where “writing, experimentation, “work-
ing out” are essential disciplines for the theoretician”. It also questions the
boundaries between intentions and results and how implementations can bring
about unexpected consequences. Such repercussions (or accidents) can in turn

“‘reveal’ the underlying assumptions of software—the ones we rely upon in order
to make software intelligible.” (Frabetti, 161).

Frabetti reflects on how unexpected system behaviour contributes to a
perceived sense of separation through the novelty it creates where at “the
moment when we are ‘surprised’ by software—is the moment when we form a

‘point of view’ on software that aporetically separates ourselves from it.” (Frabetti,
160). Both her ‘assumptions’ and ‘surprises’ can be understood as processes
emerging from systems (or software) without having been part of their initial
specification. Assembling automated processes can introduce a sense of incom-
pleteness that can bring about side effects, expanding the potential behaviour
realised with such systems.

For many musical works based on algorithmic processes, large-scale form is
still done manually and without any computer assistance (Eigenfeldt 2014).
The ephemeral nature of creative generative applications involves uncertainty
and incompleteness. This often makes it ideal for local experimentation but
difficult for any kind of global organisation. Perhaps that is the nature of elec-
tronic music somehow. Still, models can be developed that take advantage of
such tendencies. Instead of composing with fixed systems, one can imagine
working out musical material while setting up the operations it will be organ-
ised through. Instead of having positive accidents occurring during develop-
ment, they become part of an automated synthesis process that can then be
executed in various ways.

Another aspect of local contact between methods and material is how difficult
it is to predict the long-term results of an action procedure. Although extended
sequences of operations can easily be calculated, their relevance tends to stay

100

the strongest around the local conditions from where they originate. However,
events that are generated further away in time remain more uncertain to be of
any use. A tension, therefore, emerges between perceived local sound and the
direction of a technical process that has been pre-computed and put in motion.
Addressing such tensions highlights the importance of an interactive relation-
ship with algorithms on different levels.

3. Streams

3.1. Flow

A characteristic of raw electronic sound is how it unfolds like an endless stream.
Unlike most naturally caused sounds, the synthetic ones last forever. Stopping a
sound or making it disappear becomes something that requires decision making
instead of being caused by properties of a sound-producing object. Synthetic
sound, therefore, exists as a continuous flow waiting to be further transformed
without any ”limitations of human performance” (Holmes 2015, 123). For sound
synthesis, this can mean to apply operations that disturb or halt a sound stream.
The same principle can be applied to how a sound starts or changes.

Sound composition becomes the activity of managing a sonic flow from which
things appear and later disappear. Streams of sound are characterised by their
behaviour over time and the way they start and stop.

In his study of flow in television, media scholar Raymond Williams proposes a
three-tier categorisation based on the order of detail. He claims that flow takes
place over an evening programme, between events or on the detailed level of a
particular movement where “the characteristic experience, is one of sequence or
flow” (Williams 2003, 86). A flow consists of discrete items that are designed to
appear in a sequence to bring about the flow and perception of progress. How
the succession of the elements is designed is what contributes to their flow,
motion and continuity. His investigation highlights how switching between
various sources can in itself contribute to a flowing quality. A televised flow
does not begin or end but takes shape once one engages with it while it unfolds.

Flow sequences can be extended to sound synthesis where transformation
pipelines are activated but take place in time through programmatic switching.
Algorithmic sound reflects the struggle of putting together discrete elements
as unified and contributing to a coherent flow. A technical process contains a
distinct flow, (or will) and directionality that potentially “wants to sort itself out,

101

to self-assemble into hierarchical levels […] to perpetuate itself, to keep itself
going. And as it grows, those inherent wants are gaining in complexity and force.”
(Kelly 2010, 25). Tuning into televised flow bears a similarity of connecting to
information streams that possess their own will, goals and direction. Coupling
such streams with operations such as switching, following or influencing can
be a way of turning their treatment into a shared creation process.

3.2. Liveness

The audible streams discussed here are constructed in real-time and through
attaching methods that transform a sound flow. An essential aspect is the ‘live-
ness ‘of the processes and algorithms that execute the synthesis and trans-
formations. This occurs not only as part of the final outcome in a piece or a
performance but through the liveness of the software operations themselves
that are executed while a sound is being put together or refined. Context-sen-
sitive sound transformations become concrete while operating and belong to
what Wolfgang Ernst labels as time-critical actions (Ernst 2013, 143). They
allow for experimentation, the building of actions chains but are also “sensi-
tive to micro-temporal intrusion, irritation and manipulation” (Parikka 2018).
Algorithmic sound makes the impact of its constituting operations audible. The
liveness of synthetic sounds takes shape during the activation of the real-time
operations it consists of. Listening to the influence these operations have high-
lights the technical causalities responsible for their behaviour.

The malleable behaviour of sounding algorithms can be thought of in terms of
liveness but also as an example of performative action. Highlighting how they
perform, Parisi & Portanova suggest that we can look at algorithms as contin-
uously emerging from within computational processes instead of as a pre-de-
fined collection of instructions (Parisi & Portanova 2011). Technical operations
perform through the material they operate on and leave traces of how they
execute. Andrew Murphie suggests that performant computational procedures
can be studied on the lower-level of signal processing allowing to think “perfor-
mance more generally in terms of signal flows and breaks, signal events and
signal work, relations and varying intensities.” (Murphy 2013, 2). Performance
should be understood here as working with flows, including signal flows, inten-
sities and the tendencies that generate signals. Thinking sound development
through operations that deal with signals allows for approaching liveness and
performability through the different levels where sound synthesis takes place.

102

3.3. Unpredictability

Artist-researcher Winnie Soon proposes to investigate the live dimension of
code inter-action in software through the three vectors of “unpredictability,
temporality and automation”. (Soon, 2016, 115). She underlines how unpre-
dictability entails the possibility of disruptions but also the uncertainty it brings.
Her view resonates well with the synthesis models proposed here below where
unpredictability occurs on various levels. For example how the stochastic
sound-producing methods remain difficult to predict or how processes can be
activated or ordered through unpredictable methods. Another aspect relates
to the development of the synthesis pipelines in time. The choice of operations,
their change, external influence and behaviour takes place through declarative
descriptions of the processes that are made before they run. As they run, the
context will always have slightly changed causing unforeseen consequences.

Unpredictability is a big factor when putting pipelines together that reveals itself
when they run and become audible. This speculative aspect is fundamental to
the project as it demonstrates the many experimental aspects a computational
system has where many extend beyond properties of algorithms. Configurations
of operations and synthesis combine, where instead of being pre-programmed
they can be subject to conditions or triggering behaviour of the running pipe-
lines. Control then moves from being imposed to occurring through the balance
of system components. Automation thus contributes to situations of unpredict-
ability through the complexity of component interactions it causes.

4. System

OF (https://github.com/bjarnig/OF) is a software framework realised as part of this proj-
ect and enables the construction of sound streams and operation pipelines. OF
is implemented in the SuperCollider (McCartney 2002) environment and builds
on the conventions of the JITLib (Rohrhuber, de Campo, and Wieser 2005) para-
digm. The models for shaping algorithmic processes and sharing information
are partially inspired by data transformation pipelines and signal flows. Related
approaches for transforming signal flows and streams exist such as Faust for
digital sound synthesis (Orlarey, Fober and Letz 2009) or Haskell for dataflow
programming (Uustalu and Vene 2005).

https://github.com/bjarnig/OF

103

The central element in OF is the pipeline that encapsulates a synthesis process,
multiple sound transformations and various parameter controls. The pipeline is
executed through entities called behaviours that define how a pipeline is played.
A behaviour takes care of how the control and transformation operations are
activated and the synthesis is made audible. The behaviours also contain differ-
ent methods that a pipeline can be played with. This usually means further audio
treatment of the pipeline as a whole. In OF there can be many pipelines, each
with its own synthesis and associated operations. A collection of pipelines is
managed through a pool. Pipeline pools can be treated in many similar ways as
individual ones. A pipeline can also be subject to intervention or functionality
change through actions. A pipeline can be observed for creating activity based
on how it develops and includes reactions that trigger when certain conditions
are met once it executes.

The OF architecture has been designed to support an open configuration where
many kinds of SuperCollider objects such as NodeProxies and Patterns can
be used in addition to those included. The framework supports an interactive
working-mode for the creation of pipelines, how they are arranged in time and
the direct access to sound streams while they execute. The pipelines follow a
modular construction approach that allows addressing each of its components
individually. For example to replace or modify operations or events while a pipe-
line runs. The pipeline operations are divided into phases in order to change
between them and to support multiple starting points. Each phase represents a
certain state of the pipeline that can in itself be extended in different directions.
An important requirement is to always provide a minimum level of development
and continuous change. To provide varying states while being capable of focus-
ing on a specific area until the next incoming pipeline change.

Fig. 1. OF Process Example.

104

4.1. Automation

Using OF, development takes place through sequences of transformation that
are performed on initial input. Instead of expressing how a certain algorithm
operates, it can be described in a declarative manner, stating what it will do (not
how). The OF pipelines follow a declarative convention which makes them easy
to define. Configuring pipelines, their structure and behaviour and how they will
be executed are fundamental operations when using the framework. Through
automation, the processes become fluid and autonomous and by iterating a
sequence of transformation a sound shape is produced. Most of the transfor-
mations that are included with OF simply are turned on or off but are dynamic
by design. Their transformation behaviour occurs by generative principles, or
by analysing the incoming sound stream. By minimising the need to change
the parameters of a process while it runs, a sharper focus can be put on how
operations are turned on and off and the sequence they appear in. Instead of
working with parametric spaces, the idea is to allow for the opening of opera-
tional spaces that are then traversed in various ways.

An operation sequence starts on the basis of a sound synthesis algorithm. OF
contains a small collection of sound synthesis methods that all generate wave-
forms that are continuously changing as they play and vary from within by defi-
nition. Both initial and runtime parameters are supported and a waveform can
always be regenerated by invoking the constructor function with different initial
inputs. The resulting sound streams are full in terms of spectrum and ideal for
raw, rough or gritty sonorities. The audio transformations that are applied to
those are of various kinds, modifying both amplitude and frequency through
techniques such as waveshaping, clipping, amplitude modulation and frequency

Fig. 2. OF Entity Diagram.

105

shifting. Thinking transformations as operations sequences enforces a kind of
mechanical workflow. Sound comes about through chains of behaviour, oper-
ations sequences and tight automation.

4.2. Directness

An important part of the OF framework is how pipelines are manipulated while
under operation. Actions can be applied during runtime that can, for example,
halt, or disturb a running pipeline. The working mode then changes from specify-
ing how things happen to prevent them from doing so. From internal refinement
to external forcing. Such intervention offers a very direct contact that allows
focusing on the minute detail of a dynamic sound instead of the factors making
it change in time. Algorithmic sound streams offer rich possibilities for new
sounds (or those requiring more attention) in which case the framework allows
for actions to halt sequences and highlight desired aspects of a complex sound.

Sound streams and associated operations can be combined with others of a
similar kind. Instead of making links between sounds that happen simultane-
ously, relations unfold through the pipelines themselves and how their transfor-
mations take place. Each pipeline is isolated and unaware of others. The act of
binding them together can take place by switching between streams or blending
them in various ways. The way the output is treated is therefore unrelated to
the pipeline behaviour itself since it occurs on the output-level only. Switching
still has plenty of creative potentials and can, for example, include other actions
that trigger once a switching occurs. Sound stream continuity comes to the fore-

Fig. 3. OF Code with Pipeline
GUI.

106

ground where many pipelines can be activated but only a few that are audible.
The creative problem then revolves around how one connects, interprets and
makes audible a running process. If the pipelines are programmed to execute,
the switching can also be done manually, introducing liveness, and a possibly
more sensitive approach to micro-temporal details. Finally, algorithmic switch-
ing can be introduced for further exploration, for example through methods
using probabilities or permutation principles.

4.3. Boundaries

The workflows described here serve as an attempt to combine attitudes of
system building, sound synthesis and composing with process. The pipelines
function as configurations, binding together synthesis and processing while
also delineating the whole audio flow as an entity. Pipelines can be combined
in sequence or in parallel, allowing for transitions from one to the next in vari-
ous ways. They can run on their own, or be set in relations to others. Pipelines
can also be algorithmically generated. For example by using different selec-
tions from the transformations or using stochastic processes to order them.
The same applies to their duration and the delay between each transformation.
One can think of the operation sequences as a driving force behind generative
processes and their outcome. They shape the whole ensemble and the distribu-
tion of information. They resemble algorithms, consist of precise, programmed
steps and are enacted by different software components.

Collective behaviour can also arise once several pipelines are running at the
same time that are possibly influencing each other. Registering some as observ-
ing or reacting can lead to a deferral of any centralised control and move things
more towards distributed chains of behaviour. Music then occurs as a result of
how relations are arranged. The system develops according to local changes
and can even be thought of as an emergent complex system. Such attempts
deserve further investigation. However, the fundamental OF features are the
most notable. To set up audible transformations pipelines, to manipulate those
algorithmically and to manipulate sound streams using audio domain processes.
A certain workflow often appears, but also a sonic imprint, a characteristic
behaviour that emerges from the basic principles the framework is built around.

The OF software framework and the ideas that have been covered in this text
are grounded in the author’s creative practice and approach to synthesis and
composition. The framework reflects a process-oriented attitude and should not
be considered as something fixed but rather as evolving and context-sensitive.

107

The composition ‘Drain’ (2021) is a recent practical example. The piece explores
synthetic sound streams developed in-time through transformational pipelines
and various behaviours for activating those. The pipelines are pre-configured
and then activated. The live element evolves around switching, processing and
modifying the pipelines while they run.

Many processes are continuously running, even in the background and later
receive focus by being switched on (or off). Such manual actions often intro-
duce new events and other processes and so the piece unfolds. Somehow the
idea is of an operator connecting to an autonomous process and interpreting
it while it runs.

Recorded examples from OF and the piece can be found here:

5. Conclusion

This article has presented an approach to synthesis and composition based on
sound streams, operation pipelines and data processing. Pipelines have been
defined as bundles of synthesis and transformation and how they bring about
possibilities for process and development has been a central concern. Opera-
tional spaces, process configuration, automation, direct access, liveness, incom-
pleteness and unpredictability have all been discussed as possible dimensions
that augment a creative approach to sound composition. A software framework,
OF, was introduced that implements many of concepts that have been covered
and its software architecture was demonstrated.

Fig. 4. OF Sound Examples.
https://soundcloud.com/
bjarni/sets/research

https://soundcloud.com/bjarni/sets/research
https://soundcloud.com/bjarni/sets/research

108

The OF components should be extended in various ways to better address the
framework purpose. The synthesis modules are similar in nature and broadening
their scope will allow for enacting the operations in more ways. The behaviours
are also rather narrow and given the tight relationship between the synthesis
and processing, adding more experimental behaviours is needed in order to fully
explore the pipeline possibilities. Finally, the transformations (and algorithms
that manipulate them) offer great potential for further development. Process-
ing based on self-analysis and time-domain distortions seems to be a fruitful
area to explore. In addition to the component improvements, an investigation
is needed for how interaction occurs within the framework, for example how
pipelines are made to start, stop or change. Concerns that further question the
boundaries of sound, treatment and algorithm.

References

Chaitin, Gregory.
2006. Meta Math! The Quest for
Omega. New York, NY: Vintage
Books.

Chun, Wendy Hui Kyong.
2011. Programmed Visions :
Software and Memory. Cam-
bridge, MA: The MIT Press.

Eigenfeldt, Arne.
2014. Generating Structure –
Towards Large-Scale Formal
Generation. Proceedings of the
AAAI Conference on Artificial
Intelligence and Interactive
Digital Entertainment, 10(1).

Ernst, Wolfgang.
2013. Digital Memory and the
Archive. Edited by Parikka
Jussi. University of Minnesota
Press.

Frabetti, Federica.
2015. Software Theory: A
Cultural and Philosophical
Study, London: Rowman and
Littlefield International.

Holmes, Thom.
2015. Electronic and Exper-
imental Music: Technology,
Music, and Culture. London.
Routledge.

Kanervisto, Scheller
and Hautamäki.
2020. Action Space Shaping in
Deep Reinforcement Learning.
EEE Conference on Games
2020. arXiv:2004.00980.

Kelly, Kevin.
2010. What Technology Wants.
New York, NY: Viking Press.

Koenig, Gottfried Michael.
1965. The Second Phase
of Electronic Music. http://
koenigproject.nl/download-
pdfs/ (accessed 10 Jan 2021).

Koenig, Gottfried Michael.
1987. Genesis of Form in
Technically Conditioned Envi-
ronments. Interface 16, no.3.
165-175.

Law, John.
2004. After Method. New York,
NY: Routledge.

McCartney, James.
2002. Rethinking the Computer
Music Language: SuperCollider.
In Computer Music Journal,
26(4), 61-68. Cambridge, MA:
MIT Press.

Murphie, Andrew.
2018. Convolving Signals
Thinking the performance
of computational
processes. Performance
Paradigm, (9). http://www.
performanceparadigm.net/
index.php/journal/article/
view/135 (accessed 11 Dec
2020).

Parikka, Jussi.
2018. Ernst on Time-Critical
Media: A mini-interview.
Machinology. https://
jussiparikka.net/2013/03/18/
ernst-on-microtemporality-a-
mini-interview/ (accessed 22
Jan 2021).

http://koenigproject.nl/download-pdfs/
http://koenigproject.nl/download-pdfs/
http://koenigproject.nl/download-pdfs/
http://www.performanceparadigm.net/index.php/journal/article/view/135
http://www.performanceparadigm.net/index.php/journal/article/view/135
http://www.performanceparadigm.net/index.php/journal/article/view/135
http://www.performanceparadigm.net/index.php/journal/article/view/135
https://jussiparikka.net/2013/03/18/ernst-on-microtemporality-a-mini-interview/
https://jussiparikka.net/2013/03/18/ernst-on-microtemporality-a-mini-interview/
https://jussiparikka.net/2013/03/18/ernst-on-microtemporality-a-mini-interview/
https://jussiparikka.net/2013/03/18/ernst-on-microtemporality-a-mini-interview/

109

Parisi, Luciana
and Stamatia Portanova.
2011. Soft thought
(in architecture and
choreography). Computational
Culture 1 (November 2011).
http://computationalculture.
net/soft-thought/. (accessed
18 Dec 2020).

Rohrhuber, Julian,
Alberto de Campo Alberto,
and Renate Wieser.
2005. Algorithms Today:
Notes On Language Design For
Just In Time Programming.
International Computer Music
Conference. Volume 2005.

Soon, Winnie.
2016. Executing Liveness:
An Examination of the Live
Dimension of Code Inter-
actions in Software (Art)
Practice. PhD dissertation,
Aarhus University. http://
siusoon.net/home/me/
doc/soon_PhD_FINAL.pdf
(accessed 24 Nov 2020)

Suchman, Lucy.
2006. Human-Machine Recon-
figurations: Plans and Situated
Actions (2nd ed., Learning in
Doing: Social, Cognitive and
Computational Perspectives).
Cambridge: Cambridge Univer-
sity Press.

Suchman, Lucy.
2012. Configuration. In Celia
Lury and Nina Wakeford (Eds.),
Inventive Methods: The hap-
pening of the social. London.
Routledge. 48–60.

Uustalu, Tarmo,
and Varmo Vene.
2005. The Essence of Dataflow
Programming. Central Euro-
pean Functional Programming
School, First Summer School,
CEFP 2005, Budapest,
Hungary.

Williams, Raymond.
2003. Television : Technology
and Cultural Form. New York
:Schocken Books.

Yann Orlarey, Dominique
Fober, and Stéphane Letz.
2009. Faust : r. Editions Dela-
tour France. New Computa-
tional Paradigms For Computer
Music, 65-96. Hal-02159014.

http://computationalculture.net/soft-thought/
http://computationalculture.net/soft-thought/
http://siusoon.net/home/me/doc/soon_PhD_FINAL.pdf
http://siusoon.net/home/me/doc/soon_PhD_FINAL.pdf
http://siusoon.net/home/me/doc/soon_PhD_FINAL.pdf

